

BIG Broadband A New Philosophy

Bandwidth is getting cheaper faster than storage. Storage is getting cheaper faster than computing. The exponentials are crossing.

"A global economy designed to waste transistors, power, and silicon area -and conserve bandwidth above allis breaking apart and reorganizing itself to waste bandwidth and conserve power, silicon area, and transistors."

(George Gilder, Telecosm, 2000)

www.ces.net/doc/seminars/20040525/ pr/customer_empowered_networking_thru_UCLP.ppt

- Dial-up speeds (28.8–56 Kbps) limit Internet Applications: Text & Data (email & chat) Web Browsing with simple images Digital Music compressed with low quality sampling rates for small files Internet Telephone (VoIP)
- Broadband (1-5 Mbps) supports More Applications:
 Digital Music Downloads & Streaming with near-CD quality
 Digital Photography & Sharing of Photos
 Video Conferencing with video in a small window
 Video Streaming with low quality in a window
 Video Surveillance with small images or slow refresh rate
- Big Broadband (100 Mbps) supports Even More Apps: High Quality Digital Music
 HDTV: 4-5 simultaneous streams (1080i MPEG-2 needs ~20 Mbps) Download Movies in minutes instead of hours
 Video Conferencing that's almost like being there

3-5 HDTV streams * 20 Mbps each = 100 Mbps, but what about Picture-in-Picture? Large HDTV displays can support Picture Marquee (4-9 streams per TV) **Example 1:** Sports fans can follow multiple games. (each in a window) **Example 2:** Surveillance cameras let parents monitor kids at play.

The cost of digital cameras has fallen to the point where they are embedded in phones & PDAs, and CMOS image sensors will accelerate that trend. So, modern homes may eventually have dozens of surveillance cameras, with all streaming to parents at work.

- Fast Channel Change
- Consumers will want to "flip" through IPTV channels just like broadcast channels.
- Video Compression can impact quality MPEG-4 and WM-9 use less bandwidth than MPEG-2, but with tradeoffs. Example: Can't see fast moving golf ball leave the tee

BIG Broadband The case for Gigabit-to-the-Home

- Download to Portable Device & Go
 Downloading *The Matrix* (7.8 GB in MPEG2 DVD format, not HDTV) takes 11.5 hours at 1.5
 Mbps, 10.5 minutes at 100 Mbps, 1 minute at 1 Gbps, and 6 seconds at 10 Mbps. Future portable devices with HDTV resolution will need even faster speeds.
- Rich Peer-to-Peer Collaboration
 Remote musicians perform together with the high bandwidth and short latency of fiber networks.

• Third Wave Computing

Consumers starting to dust off their video archive to share it online. As more apps move from PCs to the Internet, there's less need for local hard drives except as a buffer. By moving data to trusted services, it is always secure, protected, and can be shared with family or authorized visitors.

Massively Parallel Computing Grid

Consumers sharing capacity of otherwise-idle PCs across high-speed grid networks enable massively parallel computing applications such as predicting the effect of global warming.

Organic LEDs & UHDTV

OLEDs will bring HDTV resolution to handheld displays. As nanotech materials make wall-size displays practical, the 1080p HDTV resolution won't be enough, so researchers are working on Ultra-high Definition TV, which needs bandwidth in the range of 10 Gbps.

BIG Broadband

Consider these False Predictions

In case you don't think we need Gigabit-to-the-home...

COMPUTERS

- "I think there is a world market for about five computers." Thomas J. Watson Jr., chairman of IBM (1943)
- "640K [of computer memory] ought to be enough for anybody." Bill Gates, founder and CEO of Microsoft (1981)

INTERNET

 "Almost all of the many predictions now being made about 1996 hinge on the Internet's continuing exponential growth. But I predict the Internet will soon go spectacularly supernova and in 1996 catastrophically collapse." – Robert Metcalfe, founder of 3Com and inventor of Ethernet (1995)

INVENTION

"Everything that can be invented has been invented." – Charles H.
 Duell, commissioner of the US Patent Office, recommending that his office should be abolished (1899)

Co

BIG Broadband

Consider These False Predictions

... CONTINUED

• TELEPHONE

- "Well-informed people know it is impossible to transmit the voice over wires and that were it possible to do so, the thing would be of no practical value." – Boston Post (1865)
- RADIO
 - "The wireless music box has no imaginable commercial value.
 Who would pay for a message sent to nobody in particular?" –
 David Sarnoff's associates responding to his urgings for investment in radio (April 1912)
- TELEVISION
 - "Television won't last because people will soon get tired of staring at a plywood box every night." – Darryl Zanuck, Movie Producer, 20th Century Fox (1946)
- ELCTRIC POWER
 - "Fooling around with alternating current is just a waste of time.
 Nobody will use it, ever." Thomas Edison (1889)

Downloading The Matrix (7.8 GB)

Delivery Method	Days	Hours	Minutes
Dial-up (56 Kbps)	13	77777 77	
Pony Express	11 ^a		
Wireless (512 Kbps)	1.5 ^b		
DSL (640 Kbps)	1	ter	
Cable (1.5 Mbps)		11.5	
T1 (1.54 Mbps)		11	
FedEx		10 ^c	
Ethernet (10 Mbps)		2	
Fast Ethernet (100 Mbps)			10.5
Gigabit Ethernet (1000 Mbps)			1

^a New York to California: extrapolated from record delivery time of 7 days 17 hours, traveling approximately 2,000 miles (from St. Joseph, Missouri to Sacramento, CA) ^b Maximum 150 users per node

^c Express delivery from New York, NY 10005 to Beverly Hills, CA 90210

BIG Broadband for Fast Channel Switching of IPTV

• **Broadcast TV sends dozens or Hundreds of Channels.** The TV tunes to a frequency – QUICKLY. Consumers scan the channels by clicking through.

Internet Television (IPTV) needs the same experience.
 Establish connection with new Video Server (built-in delay)

• Picture-in-Picture amplifies the effect. Picture marquee would make it even worse.

BIG Broadband for Rich Peer-to-Peer Collaboration

TelePresence breaks the Distance Barriers

Distributed, Immersive Performance

Signing & Lip Reading for the Deaf

Collaborative Music Performance over Internet 2

BIG Broadband

for Rich Peer-to-Peer Collaboration

... CONTINUED

LIVE STREAMING:

- Latency is a Crucial Limiting Factor
 - Only ~ 20-40 ms is unnoticeable (for universal interactive applications)
- Tradeoff: Latency versus bandwidth
 - Compression reduces bandwidth
 - But: high compression increases latency (e.g., interframe MPEG compression)

• Approach:

Experiment within this design space
 e.g. resolution, frame rate, SW/HW codecs
 vs. uncompressed audio & video

<section-header>

1280x720 pixels

BIG Broadbar for Massively Parallel Computing Gr	nd rid
The World Community Grid	
 Many individual computers joined together to create a large system with mass computational power that far surpasses that of a handful of supercomputers. 	ive
 Because the work is split into small pieces that can be processed simultaneou research time is reduced from years to months. 	ısly,
- The technology is also more cost-effective, enabling better use of critical funds	s
 Data access speed is a critical limiting factor, but connect them with a BIG Broadband network that's as fast as a computer bus, and remote data is acce at local hard disk speeds 	sses
Examples:	
 The World Community Grid joins together many individual computers, creating large system with massive computational power that far surpasses the power handful of supercomputers. Because the work is split into small pieces that ca processed simultaneously, research time is reduced from years to months. Th technology is also more cost-effective, enabling better use of critical funds. Detect extraterrestrial intelligence through analysis of radio telescope data Human Proteome Folding Project UNAIDS, the Joint United Nations Program to Fight HIV & AIDS 	g a of a n be le

- Japan Broadcasting Company
 - Demo of Early Prototype
 - Over a 24 Gbps Fiber Network
 - 18 minute video = 3.5 TB storage
- For Room Size Displays
 - 450" (37') Diagonal
- 16x the Resolution of HDTV
 - 7680x4320 pixels (vs. 1920x1080)
 - 32M total pixels (vs. 2M)
 - 60 frames/sec (vs. 30)

• 22.2 Channel Audio

- 10 at ear level, 9 above, 3 below

BIG Broadband Addresses Social Issues Orive Universal Broadband Adoption We "invented" the Internet and once led the world in access But we have now fallen to 16th in percent of homes subscribing But we have now fallen to 16th in percent of homes subscribing Bust regain our lost 60-year Tech Leadership (science grid) Must regain our lost 60-year Tech Leadership (science grid) Improve Employment options while Reducing Traffic Contain Healthcare Costs with aging population Distance Learning Must recover from a Crisis in Education

- Bridge the Digital Divide
 - Leaving people (and towns) behind will drain the economy
- Improve National Security
 - It's a matter of Survival

BIG Broadband Toward Universal Adoption

Goal: "This country needs a national goal for broadband technology... universal, affordable access by 2007." - President George W. Bush, Albuquerque, NM, March 2004

Benefits: "Broadband will not only help industry; it'll help the quality of life of our citizens."

- Tele-Work
- Tele-Medicine
- Distance Learning
- National Security
- Jobs and Economic Growth
 - President George W. Bush, Albuquerque, US Department of Commerce, June 2004

Government's Role: "The role of government is not to create wealth; the role of our government is to create an environment in which the entrepreneur can flourish, in which minds can expand, in which technologies can reach new frontiers."

- President George W. Bush, Technology Agenda, November 2002

Big Broadband: Toward Universal Adoption

... CONTINUED

Economic Environment: "We ought not to tax access to broadband. If you want something to flourish, don't tax it."

- Extend Internet tax moratorium to Nov.2007, possibly permanent
- Extend R&D tax credit, possibly permanent
- Accelerate depreciation for capital equipment
 President George W. Bush, Baltimore, April 2004

Regulatory Environment: "Broadband providers have trouble getting across federal lands. That's why I signed an order to reduce the regulatory red tape for laying fiber optic cables and putting up transmission towers."

- Improve access to Rights-of-Way
- FCC frees new fiber infrastructure from legacy regulation
- Verizon, SBC and Bell South to wire 20M new homes by 2007 (>\$6B)
- Pending rewrite of 1996 Telecom Act
 President George W. Bush, Baltimore, April 2004

CAZILECH

0

BIG Broadband

Toward Universal Adoption

... CONTINUED

Beware of statistics & forecasts designed to impress:

"95% of U.S. zip codes can access broadband today." 20% of the population has **No** access, and others have no **Competition**.

"Broadband will be in 62% of US households by 2010." The FCC defines High-speed Internet access as anything faster than 200 Kbps in any one direction.

Already, **75%** of South Korean households have broadband that is 10-20 * faster and costs 10-25 * less.

In 1992, the Bells promised fiber and speeds of >45 Mbps in each direction, in order to get regulatory concessions.

CAZILECH

BIG Broadband

for Economic Development

In 2005, US lost its 60-year tech leadership because We now rank 12th in Broadband Adoption per 100 Inhabitants

							\geq
	DSL	Cable	Other	Total		TOTAL	\geq
	per 100	per 100	per 100	per 100	Rank	Subscribers	
Korea	14.1	8.5	2.2	24.9	1	11,921,439	
Netherlands	11.6	7.4	0	19.0	2	3,084,561	$\left \right\rangle$
Denmark	11.8	5.5	1.6	18.8	3	1,013,500	
Iceland	17.4	0.2	0.7	18.3	4	53,264	
Canada	8.6	9.1	0.1	17.8	5	5,631,714	
Switzerland	10.8	6.5	0	17.3	6	1,282,000	\geq
Belgium	9.6	6.0	0	15.6	7	1,618,944	
Japan	10.4	2.3	2.3	15.0	8	19,097,172	
Finland	11.2	2.2	1.6	15.0	9	779,929	\sim
Norway	12.3	2.0	0.5	14.9	10	680,000	
Sweden	9.5	2.6	2.5	14.5	11	1,302,861	
United States	4.7	7.4	0.9	13.0	12	37,900,000	

Source: Organization for Economic Cooperation and Development, Dec.2004 3rd in 2000

Provider	Monthly Fee	Start-Up Costs	Maximum Download	Maximum Upload
	,		Speed#	Speed
Verizon	\$37.95	\$39.95	3.0 Mbps	128 kbps-384 kbps
Covad	\$39.95	\$99.00	1.5 Mbps	128 kbps
Speakeasy	\$39.95	\$99.00	728 kbps	128 kbps
Earthlink	\$44.95	varies	3.0 Mbps	128 kbps-384 kbps
SBC	\$49.95	\$99.00-\$349.00	1.5 Mbps	128 kbps
Atlantech	\$59.00	varies	1.5 Mbps	128 kbps
Bell South	\$45.92	\$0-\$115.00	1.5 Mbps	256 kbps
Bell South DSL-Lite	\$34.95	\$0-\$115.00	256 kbps	128 kbps
Comcast	\$42.95	\$39.90-\$149.99	4.0 Mbps	384 kbps
RoadRunner	\$44.95	varies	5.0 Mbps	384 kbps
Charter	\$42.99	\$74.00	3.0 Mbps	256 kbps
Earthlink	\$45.95	varies	4.0 Mbps	384 kbps

	Convico	Browidor	Monthly Foo	Start-Up Costs	Maximum Download	Maximum Upload	
	Service	Service Frontier Piontilly Fee Start=0		Start-op Costs	Speed#	Speed	
		Verizon	\$37.95	\$39.95	3.0 Mbps	128 kbps-384 kbps	
_		Covad	\$39.95	\$99.00	1.5 Mbps	128 kbps	
	ADGI	Speakeasy	\$39.95	\$99.00	728 kbps	128 kbps	
		Earthlink	\$44.95	varies	3.0 Mbps	128 kbps-384 kbps	
-	ADSL	SBC	\$49.95	\$99.00-\$349.00	1.5 Mbps	128 kbps	
_		Atlantech	\$59.00	varies	1.5 Mbps	128 kbps	
		Bell South	\$45.92	\$0-\$115.00	1.5 Mbps	256 kbps	
		Bell South DSL-Lite	\$34.95	\$0-\$115.00	256 kbps	128 kbps	
-		Comcast	\$42.95	\$39.90-\$149.99	4.0 Mbps	384 kbps	
		RoadRunner	\$44.95	varies	5.0 Mbps	384 kbps	
	Cable	Charter	\$42.99	\$74.00	3.0 Mbps	256 kbps	
	Cubic	Earthlink	\$45.95	varies	4.0 Mbps	384 kbps	
_	моает	Adelphia	\$43.95	varies	4.0 Mbps	384 kbps	
		Cox	\$49.00	varies	4.0 Mbps	512 kbps	
		TW/Brightline	\$41.95	varies	5.0 Mbps	384 kbps	
	Satallita	DirecWay	\$59.95	\$600.00	500 kbps	50 kbps	
_	Satemite	Wildblue	\$69.95	\$478.95	1.0 Mbps	200 kbps	

ADSL Speeds depend on customer's distance from provider's central office. Cable line speeds can vary due to bandwidth sharing. These speeds are maximum without sharing. Prices are based on customer also subscribing to phone service or cable TV service.

> 10-20 times slower than in France & South Korea 10-25 times more expensive than in Japan Notice the slow upload speeds.

Source: U.S. Census Bureau

TeleWork

- Collaborative documents
- Nonverbal communication
- More like "being there"
- Requires 512+ Kbps bandwidth in both directions

for Tele-Work

BIG Broadband to Bridge the Digital Divide

Of Every 100 Kindergartners:

Latino	(24 year-olds)	White	
62	Graduate High School	91	
29	Complete Some College	62	
6	Obtain Bachelors Degree+	30	

Source: US Bureau of Census, Current Population Reports Educational Attainment in the United States; March 2000

College Graduates by Age 24

BROADBAND at HOME	Young People fro
<10% of HH w/ income <\$25K	
60% of HH w/ income >\$150K	Young People fro

Young People from <u>High</u> Income Families	48%
Young People from <u>Low</u> Income Families	7%

Source: Tom Mortenson, Research Seminar on Public Policy Analysis of Opportunity for Post Secondary, 1997 in From: Latino Health Care Project, Report at Casey Journalism School for Children and Families

One great opportunity is to spread broadband throughout America via our power lines." - President George W. Bush, Albuquerque, US Department of Commerce, June 2004

- FCC has adopted BPL rules
- Utilities, hotel operators and others are moving beyond trials

But wireless has Security Risks

FTTH technical tutorial Why FTTH?

- Enormous information carrying capacity
- Easily upgradeable
- Ease of installation
- Allows fully symmetric services
- Reduced operations and maintenance costs
- Other Benefits of optical fiber:
 - Very long distances
 - Strong, flexible, and reliable
 - Allows small diameter and light weight cables
 - Secure
 - Immune to electromagnetic interference (EMI)

- A single copper pair is can carry 6 phone calls
- A single fiber pair is can carry over 2.5 million simultaneous calls (64 channels at 2.5 Gbps)
- A fiber optic cable with the same bandwidth carrying as a copper cable is less than 1% of the size and weight

Source: Corning Incorporated

... and more than 400 more in 43 states

Dalton, GA

BIG Broadband

Salt Lake City, UT

Source: Fiber-to-the-Home Council, May 2005

US Senate Energy and Commerce Committee

Briefings

http://commerce.senate.gov/nearings/index.cfm						
Decency	Thursday	January 19	10:00 AM			
Internet Pornography	Thursday	January 19	2:30 PM			
Broadcast and Audio Flag	Tuesday	January 24	10:00 AM			
Competition and Convergence	Thursday	January 26	10:00 AM			
Video Franchising	Tuesday	January 31	10:00 AM			
Video Content	Tuesday	January 31	2:30 PM			
Net Neutrality	Tuesday	February 7	10:00 AM			
Municipal Networks	Tuesday	February 14	10:00 AM			
FCC Activities and Policy	Wednesday	February 15	10:00 AM			
USF Contributions	Tuesday	February 28	10:00 AM			
USF Distributions	Tuesday	February 28	2:30 PM			
Wireless Issues/Spectrum Reform	Thursday	March 2	10:00 AM			
Rural Telecommunications	Tuesday	March 7	10:00 AM			
Voice-over Internet Protocol (VoIP)	Tuesday	March 14	10:00 AM			
Wall Street Telecom Perspective	Tuesday	March 14	2:30 PM			

Public Infrastructure

(a variety of objectives)

(and business models)

- Economic Development
- Bridge Digital Divide
- Public & Emergency Services
- Ease Traffic Congestion
- Homeland Security
- Open Competition
- ROW Access Fees
- Minimize Street Cuts

Who Benefits?

Congestion ocurity tition Fees eet Cuts

Residential Gateway Marketing Challenges

Wayne Caswell

Extending the

with Gateways &

Austin, Texas 512-335-6077

Network Computing

Business

Match your Terminology to your Audience

Intersection Gateway

RG benefits span across sectors, so it's critical to find the right messages for each.

IBM had bad experiences in consumer markets, so any proposal with the term Residential was ignored.

Inter/section Gateways, associated with an e-business strategy, was more palatable.

Today's Service Gateway designs are tied to specific services and use software from OSGi (the Open Service Gateway Initiative).

Consumers want access to All Services - without new devices or wiring for each Service Providers want access to Al Consumers - regardless of their devices, wiring & protocols

